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Abstract

After stating the formal requirements, the concept of a metric is gradually explained and illus-
trated starting from simple cases in plane geometry, working the way up to the derivation of the
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric, being the simplest metric for a homogeneous
and isotropic spacetime. It is then briefly outlined how it relates to Einstein’s field equations of gen-
eral relativity, giving rise to Friedmann’s solution which describes the evolution of a homogeneous and
isotropic universe.
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1 Definition of a metric

A metric is a distance function which gives the separation between 2 arbitrary points of a given set of
points. It needs to satisfy 4 criteria to formally qualify as a metric:

1. The distance between any 2 points is always positive.

2. The distance between 2 points is zero if and only if the 2 points are the same.

3. The distance between A and B equals the distance between B and A.

4. The distance between A and B is less or equal than the distance between A and C plus the
distance between C and B.

The set of points, together with the metric, form a metric space. Metrics are often used in the context
of points characterized by geometrical coordinates but also exist for more exotic sets. Consider the set
of 3-letter words { cat, car, dog, ... }. The function defining the separation between 2 words as the
number of letters that need to be changed to transition from one word to another, is a valid metric.

If a metric expresses the infinitesimal distance between 2 points, the distance along an arbitrary path
connecting 2 widely separated points is obtained by integrating the metric.

2 Surface metrics

2.1 Curvature dependent angular term

2.1.1 Flat surfaces

Consider the points M and N with cartesian coordinates M(x, y) and N(x + dx, y + dy) on a plane
surface as illustrated in figure 1.
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Figure 1: Infinitesimal distance dl on a plane surface between points M and N with
cartesian coordinatesM(x, y) andN(x+dx, y+dy) and polar coordinates
M(r, θ) and N(r + dr, θ + dθ).

The distance dl between M and N is given by Pythagoras’ theorem as:
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dl2 = dx2 + dy2

When polar coordinates M(r, θ) and N(r+ dr, θ+ dθ) are used instead of cartesian, the transformation
is governed by:


x = r cos θ

y = r sin θ

(1a)

(1b)

Deriving equations (1a) and (1b) leads to:


dx = dr cos θ − r sin θ dθ

dy = dr sin θ + r cos θ dθ

Taking the square of both equations and summing them together gives:

dx2 + dy2 = (dr cos θ − r sin θ dθ)2 + (dr sin θ + r cos θ dθ)2

dx2 + dy2 = dr2 cos2 θ + r2 sin2 θ dθ2 − 2 dr cos θ r sin θ dθ

+ dr2 sin2 θ + r2 cos2 θ dθ2 + 2 dr sin θ r cos θ dθ

dx2 + dy2 = dr2 (cos2 θ + sin2 θ)︸ ︷︷ ︸
=1

+r2 dθ2 (sin2 θ + cos2 θ)︸ ︷︷ ︸
=1

dx2 + dy2 = dr2 + r2 dθ2

The distance dl between M and N in polar coordinates is therefore:

dl2 = dr2 + r2 dθ2 (2)

This result is not unexpected if one takes into account that the length dr and the arc r dθ converge to
the sides of a rectangular triangle in the limit where dl tends to zero.

Expression (2) is a metric for a flat surface.

2.1.2 Spherical surfaces

Now consider the points M and N with polar coordinates M(r, θ) and N(r + dr, θ + dθ) on the surface
of a sphere with radius R as shown in figure 2.
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Figure 2: Infinitesimal distance on a spherical surface between points M and N with
polar coordinates M(r, θ) and N(r + dr, θ + dθ). (Credit: Richard Taillet)

The distance dl between M and N in polar coordinates is then:

dl2 = dr2 + ρ2 dθ2 (3)

Coordinate ρ is a function of radius R and angle α, of which the latter in turn is a function of coordinate
r and radius R:

ρ = R sin α

α =
r

R

Substitution in equation (3) yields:

dl2 = dr2 +R2 sin2
( r
R

)
dθ2 (4)

Expression (4) is a metric for a spherical surface.

2.1.3 Hyperbolic surfaces

Without formally deriving it, the metric for a hyperbolic surface is very similar to the one for a spherical
surface. The only difference is the sine which has to be substituted by the hyperbolic sine:

dl2 = dr2 +R2 sinh2
( r
R

)
dθ2 (5)
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2.1.4 Curved surfaces

The metrics (2), (4), (5) derived in the previous sections are elegantly combinable in a single metric
by introducing the curvature parameter κ which takes the value +1, 0 or -1 depending on whether the
surface is spherical, flat or hyperbolic.

dl2 = dr2 + S2
κ(r) dθ2

with Sκ(r) =


R sin

(
r
R

)
when κ = +1

r when κ = 0

R sinh
(
r
R

)
when κ = −1

Other properties of spherical, flat and hyperbolic geometries are summarized in table 1. More notably
the sum of the angles Σα of a triangle and the circumference c of a circle are essentially different than
what is the case in flat geometries.

Curvature Geometry Triangle Circle
κ = +1 spherical Σα > π c < 2πr

κ = 0 flat Σα = π c = 2πr

κ = −1 hyperbolic Σα < π c > 2πr

Table 1: Classification of geometries depending the value of curvature parameter
κ.

While 3-dimensional hyperbolic or spherical geometries are not easy to visualize, their 2-dimensional
counterparts as depicted in figure 3, help to understand the essential differences.

Figure 3: Visualization of hyperbolic, flat and spherical 2-dimensional geometries.
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2.2 Curvature dependent distance term

2.2.1 Spherical surfaces

An alternative metric for a spherical surface is relatively easy to derive by considering the surface as
contained in a 3-dimensional space. If the positions of M and N are then characterized by cartesian
coordinates M(x, y, z) and N(x+ dx, y + dy, z + dz), the distance dl between them is:

dl2 = dx2 + dy2 + dz2 (6)

On the other hand, any point on the surface of a sphere with radius R must satisfy the condition:

x2 + y2 + z2 = R2 (7)

The relationship between the cartesian coordinates (x, y) in the XY plane and the equivalent polar co-
ordinates (ρ, θ) in the XY plane are given by equations (1a) and (1b) but now with ρ as radial coordinate
instead of r:


x = ρ cos θ

y = ρ sin θ

(8a)

(8b)

Deriving equations (8a) and (8a) and summing the squares of the derivatives results in:

dx2 + dy2 = dρ2 + ρ2 dθ2 (9)

Summing the squares of equations (8a) and (8b) yields:

x2 + y2 = ρ2 (cos2 θ + sin2 θ)︸ ︷︷ ︸
=1

x2 + y2 = ρ2 (10)

Combining equations (6) and (9) gives:

dl2 = dρ2 + ρ2 dθ2 + dz2 (11)

Combining equations (7) and (10) leads to:

z2 = R2 − ρ2 (12)

The Friedmann-Lemaı̂tre-Robertson-Walker Metric 6
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Deriving equation (12) results in:

2 z dz = −2 ρ dρ

dz = −ρ dρ
z

(13)

Substituting equations (13) and (12) in equation (11) yields:

dl2 = dρ2 + ρ2 dθ2 + dz2

dl2 = dρ2 + ρ2 dθ2 +
ρ2 dρ2

z2

dl2 = dρ2 + ρ2 dθ2 +
ρ2 dρ2

R2 − ρ2

dl2 =
R2

R2 − ρ2
dρ2 + ρ2 dθ2 (14)

Note that ρ is a coordinate which is unmeasurable on the surface of the sphere.

Although it looks different, the metric of equation (14) is fully equivalent with the metric of equation (4).
Their difference in appearance is solely the result of the use of different coordinate systems.

2.2.2 Hyperbolic surfaces

Without formally deriving it, the metric for a hyperbolic surface is again very similar to the one for a
spherical surface. The only difference this time is the sign in the denominator:

dl2 =
R2

R2 + ρ2
dρ2 + ρ2 dθ2 (15)

2.2.3 Curved surfaces

The metrics (2), (14), (15) derived in the previous sections are again elegantly combinable in a single
metric using the curvature parameter κ which takes the value +1, 0 or -1 depending on whether the
surface is spherical, flat or hyperbolic:

dl2 =
R2

R2 − κ ρ2
dρ2 + ρ2 dθ2
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3 Spatial metrics

3.1 Curvature dependent distance term

As was the case for a spherical surface, the metric for a spherically curved 3-dimensional space is
relatively easy to derive by considering it as contained in a one dimension higher space. If the positions
of M and N are then characterized by cartesian coordinates M(x, y, z, u) and N(x + dx, y + dy, z +

dz, u+ du), the distance dl between them is:

dl2 = dx2 + dy2 + dz2 + du2 (16)

On the other hand, any point must satisfy the following condition involving the radius of curvature R:

x2 + y2 + z2 + u2 = R2 (17)

The relationship between the cartesian coordinates (x, y, z) in the XYZ subspace and the equivalent
spherical coordinates (ρ, θ, φ)1 is illustrated in figure 4.

y

z

M

x

q

f

r

Figure 4: Spherical coordinates (ρ, θ, φ) in relation to cartesian coordinates (x, y, z)

In physics, θ usually denotes the polar angle and φ the azimuthal angle.
In mathematics, the meaning of both angles is often swapped.

1The physics convention is used in which θ is the polar angle in the range [0, π] and φ the azimuthal angle in the range [0, 2π].
Mathematical textbooks often switch the meaning of θ and φ.
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Mathematically, the transformation is expressed by a set of 3 equations:



x = ρ sin θ cos φ

y = ρ sin θ sin φ

z = ρ cos θ

(18a)

(18b)

(18c)

Deriving equations (18a), (18b) and (18c) and summing the squares results in:

dx2 + dy2 + dz2 = dρ2 + ρ2 dθ2 + ρ2 sin2 θ dφ2 (19)

Similarly, the sum of the squares of equations (18a), (18b) and (18c) gives:

x2 + y2 + z2 = ρ2 (20)

Combining equations (16) and (19) yields:

dl2 = dρ2 + ρ2 dθ2 + ρ2 sin2 θ dφ2 + du2 (21)

Combining equations (17) and (20) leads to:

u2 = R2 − ρ2 (22)

Deriving equation (22) results in:

2 u du = −2 ρ dρ

du = −ρ dρ
u

(23)

Substituting equations (23) and (22) in equation (21) yields:

dl2 = dρ2 + ρ2 dθ2 + ρ2 sin2 θ dφ2 + du2

dl2 = dρ2 + ρ2 dθ2 + ρ2 sin2 θ dφ2 +
ρ2 dρ2

u2

dl2 = dρ2 + ρ2 dθ2 + ρ2 sin2 θ dφ2 +
ρ2 dρ2

R2 − ρ2

dl2 =
R2

R2 − ρ2
dρ2 + ρ2 (dθ2 + sin2 θ dφ2) (24)

The Friedmann-Lemaı̂tre-Robertson-Walker Metric 9
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Note that also here, ρ is a coordinate which is unmeasurable in the 3-dimensional space.

Similar to surfaces, the generalized form of metric (24) requires a curvature parameter κ which takes
the value +1, 0 or -1 depending on whether the space has a spherical, flat or hyperbolic curvature:

dl2 =
R2

R2 − κ ρ2
dρ2 + ρ2 dΩ2

with dΩ2 = dθ2 + sin2 θ dφ2

3.2 Curvature dependent angular term

Define the angle α so that:


ρ = R sin α

α =
r

R

(25a)

(25b)

Deriving equation (25a) results in:

dρ = −R cos α dα (26)

Using equations (25a) and (26), the first term of equation (24) becomes:

R2

R2 − ρ2
dρ2 =

R2 R2 cos2 α dα2

R2 −R2 sin2 α

R2

R2 − ρ2
dρ2 =

R2 cos2 α dα2

1− sin2 α︸ ︷︷ ︸
=cos2 α

R2

R2 − ρ2
dρ2 = R2 dα2 (27)

Substituting equations (25a) and (27) in equation (24) yields:

dl2 = R2 dα2 +R2 sin2 α (dθ2 + sin2 θ dφ2)

Making use of equation (25b) leads to:

dl2 = dr2 +R2 sin2
( r
R

)
(dθ2 + sin2 θ dφ2) (28)
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The generalized form of metric (28) again requires a curvature parameter κ which takes the value +1,
0 or -1 depending on whether the space has a spherical, flat or hyperbolic curvature:

dl2 = dr2 + S2
κ(r) dΩ2

with dΩ2 = dθ2 + sin2θ dφ2

and Sκ(r) =


R sin

(
r
R

)
when κ = +1

r when κ = 0

R sinh
(
r
R

)
when κ = −1

(29)

4 Spacetime metrics

4.1 The scale factor

Up to now, the radius of curvature R has been considered constant. However, nothing prohibits that R
is a function of time R(t).

Separating R2(t) out of equation (29) gives:

dl2 = R2(t)

[
d

(
r

R(t)

)2

+
S2
κ(r)

R2(t)
dΩ2

]

Using α = r/R from equation (25b) this becomes:

dl2 = R2(t)
[
dα2 + S2

κ(α) dΩ2
]︸ ︷︷ ︸

comoving coordinates

(30)

with dΩ2 = dθ2 + sin2 θ dφ2

and Sκ(α) =


sin α when κ = +1

α when κ = 0

sinh α when κ = −1

As illustrated in figure 2 for the 2D analogy, r scales proportionally with R so that α remains constant.
The part between square brackets in equation (30) is then solely expressed in angular coordinates
which remain constant as R(t) evolves with time. Such coordinates are called comoving coordinates.

It is convenient to define a dimensionless scale factor a(t) as the ratio between the radius of curvature
R(t) and its present value R(t0) = R0:
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a(t) ≡ R(t)

R0

Introducing the scale factor, equation (30) transforms into:

dl2 = a2(t)
[
d (R0 α)

2
+ S2

κ(α) dΩ2
]

with dΩ2 = dθ2 + sin2 θ dφ2

and Sκ(α) =


R0 sin α when κ = +1

R0 α when κ = 0

R0 sinh α when κ = −1

Transitioning from the comoving coordinate α to another comoving coordinate r′ = R0 α gives:

dl2 = a2(t)
[
dr′2 + S2

κ(r′) dΩ2
]

with dΩ2 = dθ2 + sin2 θ dφ2

and Sκ(r′) =


R0 sin

(
r′

R0

)
when κ = +1

r′ when κ = 0

R0 sinh
(
r′

R0

)
when κ = −1

Dropping the prime notation for r, the metric takes a form which is very similar to equation (29) but now
with the time dependent expansion of space isolated in a separate factor. It must be emphasized that
contrary to before, r is now a comoving coordinate.

dl2 = a2(t)
[
dr2 + S2

κ(r) dΩ2
]

with dΩ2 = dθ2 + sin2 θ dφ2

and Sκ(r) =


R0 sin

(
r
R0

)
when κ = +1

r when κ = 0

R0 sinh
(
r
R0

)
when κ = −1
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4.2 The FLRW metric

A spacetime metric incorporates the time coordinate on par with the spatial coordinates and gives
the infinitesimal separation ds between 2 events in spacetime instead of the infinitesimal distance dl

between 2 point in space.

If the cosmological principle2 is accepted as valid, the spacetime metric has to be everywhere the same
and a(t) can only depend on time. The simplest metric for a homogeneous and isotropic spacetime is
then:

ds2 = c2 dt2 − a2(t)
[
dr2 + S2

κ(r) dΩ2
]

with dΩ2 = dθ2 + sin2 θ dφ2

and Sκ(r) =


R0 sin

(
r
R0

)
when κ = +1

r when κ = 0

R0 sinh
(
r
R0

)
when κ = −1

(31)

This metric is commonly known as the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric. Alter-
natively, using a different coordinate system, the FLRW metric takes the form:

ds2 = c2 dt2 − a2(t)

[
dρ2

1− (κ/R2
0) ρ2

+ ρ2 dΩ2

]

with dΩ2 = dθ2 + sin2 θ dφ2

(32)

In the appendix it is shown that equation (32) transforms into equation (31) under the coordinate trans-
formation:

ρ ≡ Sκ(r)

Depending on the sign of ds2, there are 3 possibilities for the spacetime separation between events:

space-like The spacetime separation between 2 events is called ”space-like” when ds2 < 0, i.e. when
the spatial term of the spacetime metric is dominant.

time-like The spacetime separation between 2 events is called ”time-like” when ds2 > 0, i.e. when the
temporal term of the spacetime metric is dominant.

light-like The spacetime separation between 2 events is called ”light-like” when ds2 = 0 as light always
follows a path for which ds2 = 0.

2The cosmological principle states that the universe is homogeneous and isotropic, i.e. that it has the same appearance and
properties at every location and in every direction.
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To illustrate the above, depict 2 light bulbs which simultaneously emit a flash of light. Both flashes occur
with a space-like separation given that dt = 0 and that both light bulbs can obviously not be at the same
location. Similarly, depict a single light bulb which emits 2 flashes at an interval dt. If the light bulb
remains stationary between the flashes, they now occur with a time-like separation given that dt 6= 0.

A spacetime metric in terms of 4 freely chosen coordinates (x0, x1, x2, x3) and written in a very general
way as a double summation has the form:

ds2 =

3∑
µ=0

3∑
ν=0

gµν dx
µ dxν (33)

The factors gµν are the components of the metric tensor in Einstein’s field equations of general relativity:

Rµν −
1

2
R gµν + Λ gµν =

8 π G

c4
Tµν (34)

In equation (34), Rµν is the Ricci tensor, gµν the metric tensor en Tµν the stress-energy-momentum
tensor. The factor R is the scalar curvature, Λ the cosmological constant, G the gravitational constant
and c the speed of light. Tensors are a generalization of vectors and follow a particular calculus which
is a field of study on its own. To keep things simple, consider the tensors in Einstein’s field equation
to be symmetrical 4x4 matrices which implies that equation (34) actually represents 10 independent
equations.

The Ricci tensor Rµν is a function of first and second order derivatives of gµν . The scalar curvature R
is related to Rµν and therefore also dependent on first and second order derivatives of gµν .

If the cosmological principle is accepted as valid, the stress-energy-momentum tensor Tµν is a diagonal
tensor, i.e. a tensor whose elements are zero except those on the main diagonal. If it is further assumed
that the content of the universe on a sufficiently large scale behaves like a fluid3, the stress-energy-
momentum tensor takes the following form in which ε is the energy density and P the pressure of the
fluid:

Tµν =


ε 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P



It should be understandable that combining equations (32), (33) and (34) and introducing the dot nota-
tion for time derivatives leads to the following differential equations for the scale factor a(t):

3A fluid is a substance which does not resist deformation when a force is applied to it. Fluids are subdivided in incompressible
fluids like liquids and compressible fluids like gases and plasmas.
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(
ȧ

a

)2

=
8 π G

3 c2
ε− κ c2

R2
0 a

2
+

Λ

3

ä

a
=
−4 π G

3 c2
(ε+ 3 P ) +

Λ

3

The first equation is known as the Friedmann4 equation, named after the Russian cosmologist who first
derived it from Einstein’s field equations. The second equation is known as the acceleration equation
and tells something about how rapidly a(t) changes over time.

In some textbooks, the factor κ/R2
0 in the Friedmann equation is replaced by an alternative curvature

parameter k defined as:

k ≡ κ

R2
0

Obviously, k retains the sign of κ but is no longer limited to +1, 0 or -1 and takes any value as determined
by the value of R0.

4Alexander Friedmann was a Russian physicist and mathematician who lived from 1888 till 1925.
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A Equivalence of FLRW metric notations

The Friedmann-Lemaı̂tre-Robertson-Walker spacetime metric takes different shapes depending on the
coordinate system which is used. One form makes use of the function Sκ(r) as shown in notation (31)
while another form contains coordinate ρ instead of function Sκ(r) as shown in notation (32). Although
they look substantially different, one transforms into the other under the coordinate transformation:

ρ ≡ Sκ(r)

For a positive curvature (κ = +1):

ρ = Sκ(r) = R0 sin

(
r

R0

)

Consequently, the derivative dρ becomes:

dρ = R0 cos

(
r

R0

)
dr

R0
= cos

(
r

R0

)
dr

Using the above expressions for ρ and dρ, the first term between square brackets in metric (32) simplifies
to:

dρ2

1− (κ/R2
0) ρ2

=
cos2

(
r
R0

)
1− sin2

(
r
R0

) dr2 = dr2

In the absence of curvature (κ = 0):

ρ = Sκ(r) = r

Consequently, the derivative dρ becomes:

dρ = dr

Using the above expressions for ρ and dρ, the first term between square brackets in metric (32) again
simplifies to:

dρ2

1− (κ/R2
0) ρ2

= dr2

For a negative curvature (κ = −1):
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ρ = Sκ(r) = R0 sinh

(
r

R0

)

Consequently, the derivative dρ becomes:

dρ = R0 cosh

(
r

R0

)
dr

R0
= cosh

(
r

R0

)
dr

Using the above expressions for ρ and dρ, the first term between square brackets in metric (32) simplifies
once more to:

dρ2

1− (κ/R2
0) ρ2

=
cosh2

(
r
R0

)
1 + sinh2

(
r
R0

) dr2 = dr2

The conclusion is that for all values of κ, metrics (31) and (32) are fully equivalent:

ds2 = c2 dt2 − a2(t)

[
dρ2

1− (κ/R2
0) ρ2

+ ρ2 dΩ2

]

ds2 = c2 dt2 − a2(t)
[
dr2 + ρ2 dΩ2

]
ds2 = c2 dt2 − a2(t)

[
dr2 + S2

κ(r) dΩ2
]
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