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Abstract

Following an overview of the equations governing the evolution of a homogeneous and isotropic
universe, it is shown how to solve the equations both analytically for simplified models and numerically
in the most general case. The results are used to illustrate how the evolution and fate of the universe
depends on its composition. The age of the universe is calculated as a function of composition and
value of the Hubble constant and the model which best matches recent cosmological observations is
identified.

The model source code written in the m-language, suitable for both MATLAB1 and GNU Octave2,
is available via the GitHub repository https://www.github.com/rlanssiers/expandinguniverse.
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1 Equations

1.1 The Friedmann equation

Based on Einstein’s theory of general relativity, the Russian cosmologist Alexander Friedmann3 derived
the equation which describes how the scale factor4 a(t) evolves over time for a homogeneous and
isotropic universe.

(
ȧ

a

)2

=
8 π G

3 c2
ε− k c2

a2
+

Λ

3
(1)

The Friedmann equation is a first order differential equation in which the scale factor a(t) and the energy
density ε(t) are time dependent variables. All the other parts are constants withG being the gravitational
constant and c the speed of light. The factor k is a dimensionless number and describes the curvature
of space. Depending on whether it is negative, zero or positive, space has a hyperbolic, flat or spherical
geometry.

The term Λ in Friedmann’s equation is the cosmological constant which Einstein added to the field
equations of general relativity after he had realized that otherwise, all solutions were describing a uni-
verse which is expanding or contracting at any given moment in time. Such a dynamic universe could
not be reconciled with widespread belief at that time that the universe was static. The introduction of a
cosmological constant turned out to be necessary to achieve a static solution.

When Vesto Slipher5 and Edwin Hubble6 discovered that the universe is not static but expanding, Ein-
stein dropped the cosmological constant again and reverted to his original field equations. This re-
mained unchanged until 1998 when new observational evidence showed that the expansion of the
universe is accelerating, something which again required a cosmological constant to be explainable.
Although its exact nature is still unknown, whatever the cosmological constant represents is now widely
accepted as an important component of our universe.

It is convenient to define a constant energy density εΛ related to the cosmological constant as:

εΛ ≡
c2

8 π G
Λ (2)

Using that constant energy density, the cosmological constant term of the Friedmann equation be-
comes:

Λ

3
=

8 π G

3 c2
εΛ

3Alexander Friedmann was a Russian physicist and mathematician who lived from 1888 till 1925.
4The scale factor is a measure of how the unit vectors of a co-moving coordinate system scale with time.
5Vesto Slipher was an American astronomer who lived from 1875 till 1969.
6Edwin Hubble was an American astronomer who lived from 1889 till 1953.
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If further distinction is made between the energy density contributions εr from radiation and εm from
matter, the Friedmann equation takes the form:

(
ȧ

a

)2

=
8 π G

3 c2
(εr + εm + εΛ)− k c2

a2

Note that the left hand side ratio in the Friedmann equation actually equals the square of the Hubble
parameter7 H, given that:

H =
ȧ

a
(3)

1.2 The fluid equation

The volume V (t) of a sphere with radius r(t) = a(t) r0 is:

V (t) =
4

3
π a(t)3 r3

0

Its time derivative is consequently:

dV

dt
=

4

3
π r3

0 3 a2 da

dt

dV

dt
= 3 V

ȧ

a
(4)

The internal energy E(t) of a sphere with volume V (t) and energy density ε(t) is:

E(t) = V (t) ε(t)

Its time derivative is consequently:

dE

dt
= V

dε

dt
+ ε

dV

dt

dE

dt
= V ε̇+ ε 3 V

ȧ

a

dE

dt
= V

(
ε̇+ 3

ȧ

a
ε

)
(5)

The first law of thermodynamics states that the change in internal energy dE of a system expanding in

7The Hubble parameter is the proportionality factor in Hubble’s law which relates the recession velocity of distant objects to
their distance.
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a quasi-static process is the sum of the amount of heat dQ supplied to the system and the work done
on the system −P dV :

dE = dQ− P dV

dQ = dE + P dV (6)

In a homogeneous universe there is no heat transfer in or out of a co-moving volume (adiabatic expan-
sion). Combining equations (4), (5) and (6) then yields:

dQ = 0

dE + P dV = 0

dE

dt
+ P

dV

dt
= 0

V

(
ε̇+ 3

ȧ

a
ε

)
+ P 3 V

ȧ

a
= 0

ε̇+ 3
ȧ

a
(ε+ P ) = 0 (7)

A slightly different way to write equation (7) is given by:

ε̇
a

ȧ
= −3 (ε+ P )

1.3 The acceleration equation

The acceleration equation is not a new equation but rather a combination of the Friedmann equation and
the fluid equation. Taking the time derivative of Friedmann equation (1), dividing by 2aȧ and substituting
the fluid equation gives:

(
ȧ

a

)2

=
8 π G

3 c2
ε− k c2

a2
+

Λ

3

ȧ2 =
8 π G

3 c2
ε a2 − k c2 +

Λ a2

3

2 ȧ ä =
8 π G

3 c2
(ε̇ a2 + 2 ε a ȧ) +

2 a ȧ Λ

3

ä

a
=

4 π G

3 c2

(
ε̇
a

ȧ
+ 2 ε

)
+

Λ

3

ä

a
=

4 π G

3 c2
(−3 ε− 3 P + 2 ε) +

Λ

3
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ä

a
=
−4 π G

3 c2
(ε+ 3 P ) +

Λ

3

The acceleration equation tells something about how rapidly a changes over time. If there would be no
cosmological constant Λ in the acceleration equation, its outcome would never be positive, taking into
account that the energy density ε and pressure P of matter and radiation are non-negative quantities.
This would imply that the universe expands at a constant or decreasing rate, but both the Supernova
Cosmology Project 8 and the High-Z Supernova Search Team 9 independently discovered in 1998 that
the expansion of the universe is actually accelerating. The cosmological constant is the only possibility
to achieve a positive value as outcome of the acceleration equation and explain the observational
evidence for an accelerating expansion.

1.4 The equation of state

1.4.1 General form

For the kind of substances which are playing a role in cosmological calculations, the equation of state
is a linear relationship between pressure P (t) and energy density ε(t):

P = w ε (8)

It is shown in the appendix that the equation of state for a particle gas satisfies this general form, with
a proportionality factor w determined by the average speed of the particles:

w =
1

3

v̄2

c2
(9)

Based on equation (8) and the calculation rules for derivatives, equation (7) transforms into:

ε̇+ 3
ȧ

a
(ε+ w ε) = 0

ε̇+ 3 (1 + w)
ȧ

a
ε = 0

1

a3 (1+w)

d

dt

(
ε a3 (1+w)

)
= 0

d

dt

(
ε a3 (1+w)

)
= 0

ε a3 (1+w) = cst

8http://supernova.lbl.gov
9https://www.cfa.harvard.edu/supernova/home.html
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ε ∝ 1

a3 (1+w)
(10)

1.4.2 Radiation

In cosmology, radiation is the term used for massless particles moving at speeds close to the speed of
light. Photons are the obvious example of such particles but in a cosmological context, neutrinos are
also counted as a form of radiation. Recent research has shown that neutrinos might have a rest mass
but still sufficiently small to consider them as massless particles without invalidating the theory.

For radiation, v̄ = c and consequently, based on equations (8) and (9):

wr =
1

3

Pr =
1

3
εr

The proportionality of expression (10) then becomes:

εr ∝
1

a4

Denoting the present value of the scale factor as a0 and the present value of the radiation energy density
as εr,0 allows writing the proportionality as an equality:

εr =
(a0

a

)4

εr,0 (11)

1.4.3 Non-relativistic matter

In cosmology, non-relativistic matter is the term used for massive particles moving at speeds consid-
erably less than the speed of light. On Earth, all matter is made of protons and neutrons and called
baryonic 10 matter. Several research groups have shown that the estimated amount of baryonic matter
in the universe is not always in agreement with the expected amount of matter based on particular
observations. For example, the constant rotational velocity of galaxies at distances far away from their
centre is unexplainable by their baryonic content alone. Gravitational lensing is another phenomenon
which indicates there is vastly more matter in the universe than we are able to see. This unknown
non-baryonic matter is commonly called dark matter, given that it is hidden from direct observation with
today’s means. Recent estimates yield a baryonic matter contribution to Ωm,0 of 4.8% and a dark matter
contribution of 26.2%.

For non-relativistic matter, v̄2 << c2 and consequently, based on equations (8) and (9):

10Formally, baryons are particles formed by 3 quarks unlike mesons which consist of 2 quarks.

Numerical Models for the Expanding Universe 6



Rony Lanssiers

wm ≈ 0

Pm ≈ 0

The proportionality of expression (10) then becomes:

εm ∝
1

a3

Denoting the present value of the scale factor as a0 and the present value of the matter energy density
as εm,0 allows writing the proportionality as an equality:

εm =
(a0

a

)3

εm,0 (12)

1.4.4 Dark energy

Applying fluid equation (7) to the cosmological constant gives:

˙εΛ + 3
ȧ

a
(εΛ + PΛ) = 0

As εΛ is a constant by definition, its time derivative ˙εΛ is zero and consequently:

3
ȧ

a
(εΛ + PΛ) = 0

εΛ + PΛ = 0

This shows that the cosmological constant represents something which creates a negative pressure:

wΛ = −1

PΛ = −εΛ

Whatever it may be, that something is generally referred to as dark energy and its true nature is one
of the biggest mysteries of modern physics. Not only does it create a negative pressure, it appears to
violate the general law of energy conservation, given that its energy density εΛ as defined in equation
(2) remains constant as the universe expands. Its value at the present time equals its value at any other
time:

εΛ = εΛ,0 (13)
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2 Solutions

2.1 Analytical solutions

Analytical solutions for the Friedmann equation only exist for a number of simplified cases. In its most
general form, solutions are obtained by making use of numerical methods. Even though they do not
describe the full picture, examining some of the simplified analytical solution helps to understand the
different era the universe went through during its evolution.

The Friedmann equation written with distinct energy density contributions is given by:

(
ȧ

a

)2

=
8 π G

3 c2
(εr + εm + εΛ)− k c2

a2

Observational evidence indicates that the universe has a flat geometry or at least one which is very
close to flat. The first simplification therefore consists of taking k = 0.

Next, consider a universe which only contains radiation, i.e. εm = εΛ = 0. With εr given by equation
(11), the Friedman equation then simplifies to:

(
ȧ

a

)2

=
8 π G

3 c2

(a0

a

)4

εr,0

a ȧ = constant

d

dt

(
a2
)

= constant

a2 ∝ t

a ∝ t 1
2

a = a0

(
t

t0

) 1
2

In a similar fashion, the case of a universe which only contains matter, i.e. εr = εΛ = 0, and with εm

given by equation (12) leads to:

(
ȧ

a

)2

=
8 π G

3 c2

(a0

a

)3

εm,0

a
1
2 ȧ = constant

d

dt

(
a

3
2

)
= constant

a
3
2 ∝ t

a ∝ t 2
3
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a = a0

(
t

t0

) 2
3

Finally, the case of an empty universe which is only driven by a constant dark energy density as given
in equation (13) results in:

(
ȧ

a

)2

=
8 π G

3 c2
εΛ,0

ȧ

a
= constant

Remembering equation (3), the above conclusion that the ratio ȧ/a is constant allows to write:

ȧ

a
= H0

d

dt
(ln a) = H0

ln a = H0 t+ constant

a = eH0 t+constant (14)

This is obviously also true at the present time t0:

a0 = eH0 t0+constant (15)

Dividing equation (14) by equation (15) eliminates the unknown constant and results in:

a = a0 e
H0 (t−t0)

The solutions for the Friedmann equation for universes with respectively only radiation, matter or dark
energy are shown in figure 1.
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Figure 1: Relative scale factor x = a/a0 as a function of time for universes with a
present age of 13.8 Gyr containing only radiation, matter or dark energy.

The universe has evolved from an era during which radiation was dominant, over a matter dominated
period, to the present dark energy phase. The curves in figure 1 illustrate why the long term expansion
of the universe was first driven by radiation, then by matter and finally by dark energy and why the
expansion is observed to be accelerating.

2.2 Numerical solutions

The energy density that the universe without cosmological constant needs to have to be flat is called
the critical energy density εc(t) and is defined as:

εc ≡
3 c2

8 π G
H2 (16)

Substituting the critical energy density (16) in Friedmann equation (1) shows that the curvature k must
indeed be zero at that density (if Λ = 0).

Converted to units of mass, it turns out that the equivalent11 mass density ρc(t) is very small and about

11Remember from Einstein’s theory of special relativity that E = m c2.
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the same as the mass of 6 protons per cubic meter:

ρc ≈ 10−26 kg m−3

ρc ≈ 6 mp m−3

The critical energy density εc(t) is useful to remove absolute energy densities from the equations and
to replace them with dimensionless density parameters Ω(t) defined as:

Ω ≡ ε

εc
(17)

Combining equations (16) and (17) yields an expression for the energy density as a function of the
density parameter (and the Hubble parameter):

ε =
3 c2 H2

8 π G
Ω (18)

Applying equation (18) at the present time for respectively radiation, non-relativistic matter and the
cosmological constant gives:



εr,0 =
3 c2 H2

0

8 π G
Ωr,0

εm,0 =
3 c2 H2

0

8 π G
Ωm,0

εΛ,0 =
3 c2 H2

0

8 π G
ΩΛ,0

(19a)

(19b)

(19c)

Substituting equation (19a) in equation (11), the radiation energy density εr(t) becomes:

εr =
(a0

a

)4 3 c2 H2
0

8 π G
Ωr,0 (20)

Substituting equation (19b) in equation (12), the non-relativistic matter energy density εm(t) becomes:

εm =
(a0

a

)3 3 c2 H2
0

8 π G
Ωm,0 (21)

Substituting equation (19c) in equation (13), the cosmological constant energy density εΛ becomes:
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εΛ =
3 c2 H2

0

8 π G
ΩΛ,0 (22)

It is convenient to define the present curvature density parameter Ωk,0 as:

Ωk,0 ≡ −
k c2

a2
0 H

2
0

The curvature term of Friedmann equation (1) then becomes:

−k c
2

a2
= H2

0

(a0

a

)2

Ωk,0 (23)

Substituting equations (20), (21), (22) and (23) in Friedmann equation (1) yields:

(
ȧ

a

)2

=
8 π G

3 c2
(εr + εm + εΛ)− k c2

a2

(
ȧ

a

)2

=
8 π G

3 c2

[
3 c2 H2

0

8 π G

(a0

a

)4

Ωr,0 +
3 c2 H2

0

8 π G

(a0

a

)3

Ωm,0 +
3 c2 H2

0

8 π G
ΩΛ,0

]
+H2

0

(a0

a

)2

Ωk,0

(
ȧ

a

)2

= H2
0

[(a0

a

)4

Ωr,0 +
(a0

a

)3

Ωm,0 +
(a0

a

)2

Ωk,0 + ΩΛ,0

]
(24)

The relative scale factor x(t) is defined as the ratio between the scale factor a(t) and the scale factor at
the present time a(t0):

x ≡ a

a0
(25)

The first order time derivative of the relative scale factor is then:

ẋ =
ȧ

a0

Note that equation (3) results in a similar equation in terms of the relative scale factor:

H =
ȧ

a
=
ẋ a0

x a0
=
ẋ

x

Changing over to the relative scale factor x(t) in equation (24) yields:
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(
ẋ

x

)2

= H2
0

(
Ωr,0
x4

+
Ωm,0
x3

+
Ωk,0
x2

+ ΩΛ,0

)
(26)

Taking into account that the relative scale factor at the present time x(t0) equals 1 and that ẋ(t0)/x(t0)

equals the Hubble constant H0, equation (26) applied to the present time t0 results in an important
constraint on the sum of all density parameters:

H2
0 = H2

0 (Ωr,0 + Ωm,0 + Ωk,0 + ΩΛ,0)

1 = Ωr,0 + Ωm,0 + Ωk,0 + ΩΛ,0 (27)

Eliminating x2 from the denominators of equation (26) gives:

ẋ2

x2
=
H2

0

x2

(
Ωr,0
x2

+
Ωm,0
x

+ Ωk,0 + ΩΛ,0 x
2

)

ẋ = H0

√
Ωr,0
x2

+
Ωm,0
x

+ Ωk,0 + ΩΛ,0 x2

Incorporating the constraint from equation (27) for the sum of the density parameters into this expression
leads to:

ẋ = H0

√
Ωr,0
x2

+
Ωm,0
x

+ ΩΛ,0 x2 + 1− Ωr,0 − Ωm,0 − ΩΛ,0 (28)

This is a first order differential equation which has no analytical solution it its most general form given
above. The square root makes it difficult to solve the equation numerically as the square root yields a
complex number when its argument is negative.

One way to eliminate the squares is by differentiating the left and right hand side of the expression for
ẋ2 and then dividing both sides by 2 ẋ:

ẋ2 = H2
0

(
Ωr,0
x2

+
Ωm,0
x

+ Ωk,0 + ΩΛ,0 x
2

)

2 ẋ ẍ = H2
0

(
−2 ẋ

Ωr,0
x3
− ẋ Ωm,0

x2
+ 2 ẋ ΩΛ,0 x

)

ẍ = −H2
0

(
Ωr,0
x3

+
Ωm,0
2 x2

− ΩΛ,0 x

)
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Next, this second order differential equation is converted into a system of 2 first order differential equa-
tions:


ẋ = y

ẏ = −H2
0

(
Ωr,0
x3

+
Ωm,0
2 x2

− ΩΛ,0 x

)

TakingH = ẋ/x and the definition of the relative scale factor (25) into account, following initial conditions
apply:


x(t0) = 1

ẋ(t0) = H0

The result of solving the system of differential equations numerically with the aid of modern computer
software is shown in figure 2.
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Figure 2: Relative scale factor as a function of time for different matter dominated
(Ωr,0 = 0) models.

The blue curve combines (cold dark) matter and a cosmological constant with a flat or Euclidean ge-
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ometry. It is commonly denoted as the ΛCDM model and best fits the observations. According to this
benchmark model, the present universe is 13.7 Gyr old. Its expansion accelerates indefinitely and will
eventually affect space at small scales and even rip atoms apart. Whether the universe will really end in
such a Big Rip remains an open question as nobody knows how the cosmological constant or whatever
it represents behaves on the long run.

The other models shown in figure 2 are all matter dominated models without cosmological constant,
but with different geometries. The orange curve represents a negatively curved universe, i.e. one with
hyperbolic geometry. This open universe expands eternally at a rate which reaches a constant value at
late times. Its ultimate fate is a big cold void, sometimes called the Big Chill, with all celestial objects in
an end-of-life state and separated so far apart that remnant light is unable to bridge the gap between
them.

The yellow curve represents a universe with a density which exactly matches the critical density. In
absence of a cosmological constant, it consequently has a flat or Euclidean geometry. The expansion
of this flat universe continues eternally at a rate which slows down and approaches zero in the infinite
future. The model is known as the Einstein - de Sitter model.

The magenta curve represents a universe which contains enough matter to allow gravity to stop and
reverse its expansion. As a result, it eventually collapses back onto itself in a Big Crunch after about
28 Gyr of existence. This closed universe has positive curvature, i.e. a spherical geometry, and would
presently be 6.4 Gyr old and still in its expansion phase.

3 Age of the universe

Equation (28) allows calculating the age of the universe. Moving dx and dt each to one side of the
equation and integrating over x ranging from 0 to 1 yields a value for t0. Remember that x(t) was
defined such that x(t0) = 1.

dx

dt
= H0

√
Ωr,0
x2

+
Ωm,0
x

+ ΩΛ,0 x2 + 1− Ωr,0 − Ωm,0 − ΩΛ,0

dt =
dx

H0

√
Ωr,0

x2 +
Ωm,0

x + ΩΛ,0 x2 + 1− Ωr,0 − Ωm,0 − ΩΛ,0

t0 =

∫ 1

0

dx

H0

√
Ωr,0

x2 +
Ωm,0

x + ΩΛ,0 x2 + 1− Ωr,0 − Ωm,0 − ΩΛ,0

The age of the universe t0 is shown as a function of the Hubble constant H0 for different combinations
of density parameters Ωi,0 in figure 3.

The highest curve for which ΩΛ,0 = 0, gives a value for t0 of about 13 billion years for values of H0 such
as those obtained in observations with the Planck and WMAP satellites. An age of 13 billion years is
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still less than the age of the oldest known object in the universe 12. This shows that models without
cosmological constant are not very well matching current observations.

The re-introduction of the cosmological constant in Einstein’s equations provides a way to bridge the gap
between theory and observations. Observational data from the Planck and WMAP satellites neighbour
the curve for which Ωm,0 ≈ 0.3 and ΩΛ,0 ≈ 0.7. This curve represents the model which is widely
accepted as best fitting the observations. The model is known as the ΛCDM model, shorthand for Λ

Cold Dark Matter, referring to its main constituents.
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Figure 3: The age of the universe t0 as a function of the Hubble constant H0 for
different models with no radiation contribution (Ωr,0 = 0).

The parameters of the ΛCDM model13 are summarized in table 1.

12The oldest and most distant known galaxy GN-z11 is observed in the constellation Ursa Major as it existed 13.4 billion years
ago.

13Barbara Ryden, Introduction to Cosmology, 2nd Edition, page 96
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Ingredient Ω0

photons Ωγ,0 = 5.35× 10−5

neutrinos Ων,0 = 3.65× 10−5

total radiation Ωr,0 = 9.00× 10−5

baryonic matter Ωb,0 = 0.048

dark matter Ωd,0 = 0.262

total matter Ωm,0 = 0.31

cosmological constant ΩΛ,0 ≈ 0.69

Table 1: Parameters of the ΛCDM model.

This leads to a relative distribution of the components of the universe as shown in figure 4. The term
dark energy refers to the cosmological constant, giving it a physical meaning while at the same time
expressing it is not yet well understood. It is noteworthy that about 95% of the content of the universe
is of unknown origin!

4.8%

26.2%

69.0%

baryonic matter dark matter dark energy

Figure 4: Relative abundance of the different components of the universe accord-
ing the benchmark model.
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A Pressure of a particle gas

The momentum ~p of a particle with energy E moving at a velocity ~v is given by:

~p =
E

c2
~v

This is valid both for massive particles moving at non-relativistic speeds as for massless particles mov-
ing at speeds close the the speed of light.

Decomposing the vectors in 3 perpendicular components yields in x-direction:

px =
E

c2
vx

Similar equations apply for py and pz.

Consider a cubical container with side L and volume V , filled with a gas consisting of N particles
randomly moving around at an average speed v̄. When a particle elastically collides with a wall of the
container perpendicular to the x-direction, its momentum before and after the collision is the same but
with opposite sign. Its change in momentum ∆p is therefore:

∆p = px − (−px) = 2 px

Using the expression obtained earlier for the momentum px in x-direction, the change in momentum
becomes:

∆p = 2
E

c2
vx

On average, the particle collides with the wall of the container at intervals ∆t given by:

∆t =
2 L

vx

The force exerted on the wall of the container by that particle is:

Fi =
∆p

∆t
=
E

L

v2
x

c2

Summarizing over all the particles in the container, the total force exerted is:

F =

N∑
i=1

Fi =
N E

L

v̄2
x

c2
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As the particles are randomly moving around, there is no preferred direction and statistically:

v̄2
x = v̄2

y = v̄2
z

Using this equality in Pythagoras’ theorem v̄2 = v̄2
x + v̄2

y + v̄2
z yields:

v̄2
x =

1

3
v̄2

The pressure exerted by the particles in the container is the force per unit of area or:

P =
F

L2
=

1

3

N E

L3

v̄2

c2

In terms of the energy density ε this becomes:

P =
1

3

v̄2

c2
ε

In other words, the pressure P exerted by a gas of particles is proportional to its energy density ε with
a proportionality factor w given by:

w =
1

3

v̄2

c2
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